TREK Tracking by the Kalman Filter

Tongtong Cao
Hampton University

Nuclear Physics Group Meeting
May 15 th, 2018

Outline

- Particles' trajectories of the TREK experiment
- Introductions to Kalman filter and smoother
- TREK tracking with application of Kalman filter and smoother
- TREK tracking program package
- Test and preliminary results
- Summary

The Tracking System of the TREK Experiment

Physics

on the Charged Particles' Trajectories

- Lorentz force in the B area: momentum direction is changed
- Ionization and Bremsstrahlung radiation: energy is lost and momentum magnitude becomes smaller and smaller
- Multi-scattering: momentum direction is slightly changed at random

Idea of the Kalman Filter

The Kalman filter proceeds progressively from one measurement to the next and improves the knowledge about the particle trajectory by updating the track parameters with each new measurement.

- The state-space system from step k-1 to k : $\tilde{x}_{k}=F_{k-1} x_{k-1}+w_{k-1}, m_{k}=H_{k} \tilde{x}_{k}+\nu_{k}$
- F_{k-1} is propagation matrix with consideration of Lorentz force;
- $\quad w_{k-1}$ denotes random process noise with consideration of multi-scattering, which is regarded as Gaussian distribution with zero mean
- H_{k} is projector matrix
- v_{k} denotes measurement noise
- Estimated state at step k by propagation : $x_{k}^{k-1}=F_{k-1} x_{k-1}$
- Estimated covariance matrix at step k by propogation :
$C_{k}^{k-1}=E\left[\left(\tilde{x}_{k}-x_{k}^{k-1}\right)\left(\tilde{x}_{k}-x_{k}^{k-1}\right)^{T}\right]=F_{k-1} C_{k-1} F_{k-1}^{T}+Q_{k-1} \quad\left(Q_{k-1} \equiv w_{k-1} w_{k-1}^{T}\right)$
- The updated state by the filter: $x_{k}=x_{k}^{k-1}+K_{k}\left(m_{k}-H_{k} x_{k}^{k-1}\right)$
- $m_{k}-H_{k} x_{k}^{k-1}$ is called the innovation term, which is residual of the real measurement and the expected measurment
- $\quad K_{k}$ is called the Kalman gain matrix, which represents a measurement by how much the innovation improves the expected state.
- The sum of the variances of the estimation errors:

$$
J_{k}=\operatorname{Tr} C_{k}, \text { where } C_{k}=E\left[\left(\tilde{x}_{k}-x_{k}\right)\left(\tilde{x}_{k}-x_{k}\right)^{T}\right]
$$

- To minimize $J_{k}, \partial J_{k} / \partial K_{k}=0$, then

$$
K_{k}=C_{k}^{k-1} H_{k}^{T}\left(H_{k} C_{k}^{k-1} H_{k}^{T}+V_{k}\right)^{-1}\left(V_{k} \equiv \nu_{k} \nu_{k}^{T}\right), C_{k}=\left(I-K_{k} H_{k}\right) C_{k}^{k-1}
$$

Extended Kalman Filter

Prediction equations:
$x_{k}^{k-1}=f_{k-1}\left(x_{k-1}\right)$
$C_{k}^{k-1}=F_{k-1} C_{k-1} F_{k-1}^{T}+Q_{k-1}$
$F_{k-1}=\left.\frac{\partial f_{k-1}}{\partial x}\right|_{x_{k-1}}$
x : state vector
F : propagation matrix
C : covariance matrix of state
$Q:$ covariance matrix of process noise

Filter equations:
$x_{k}=x_{k}^{k-1}+K_{k}\left(m_{k}-h_{k}\left(x_{k}^{k-1}\right)\right)$
$K_{k}=C_{k}^{k-1} H_{k}^{T}\left(H_{k} C_{k}^{k-1} H_{k}^{T}+V_{k}\right)^{-1}$
$C_{k}=\left(I-K_{k} H_{k}\right) C_{k}^{k-1}$
$H_{k}=\left.\frac{\partial h_{k}}{\partial x}\right|_{x_{k}}$
m : measurement vector
V : covariance matrix of measurement noise
H : projector matrix
K : Kalman gain matrix

χ^{2}

In case of the Kalman filter, there are two residuals to consider: The first one is the residual between the expected state vector x_{k}^{k-1} after propagation from measurement $k-1$ to k and the state vector x_{k} after filtering. The second one is the residual of the actual measurement m_{k} and the measurement expected from the filtered estimate $h_{k}\left(x_{k}\right)$.

$$
\begin{aligned}
\chi_{k}^{2}=\chi_{k-1}^{2}+ & \left(x_{k}-x_{k-1}\right)^{T}\left(C_{k}^{k-1}\right)^{-1}\left(x_{k}-x_{k-1}\right)+ \\
& \left(m_{k}-h_{k}\left(x_{k}\right)\right)^{T}\left(V_{k}\right)^{-1}\left(m_{k}-h_{k}\left(x_{k}\right)\right)
\end{aligned}
$$

Smoother

- Due to the recursive nature of the Kalman filter approach the computed state vector x_{k} is based on the k measurements collected so far. It is unaffected by subsequent estimates. A smoother allows to further improve this estimate using information from any subsequent measurements as well.
- The smoothing is also a recursive procedure which proceeds step by step in the direction opposite to that of the filter with the smoother equations:
$x_{k}^{n}=x_{k}+A_{k}\left(x_{k+1}^{n}-x_{k+1}^{k}\right)$
$A_{k}=C_{k} F_{k}^{T}\left(C_{k+1}^{k}\right)^{-1}$
$C_{k}^{n}=C_{k}+A_{k}\left(C_{k+1}^{n}-C_{k+1}^{k}\right) A_{k}^{T}$

$$
k \in\{1, \cdots, n-1\}
$$

Scheme for Current TREK Tracking

State Vector for TREK and Propagation Equations

State vector: $\quad(x, y, z, \theta, \varphi, q / p)^{T}$

Lorentz force law: $\frac{d \vec{n}}{d s}=\kappa \frac{q}{p} \vec{n} \times \vec{B}$

$$
\kappa=0.299792458 \frac{\mathrm{MeV}}{\mathrm{c} \cdot \mathrm{~mm} \cdot \mathrm{~T}}
$$

Propagation function:

$$
g=\left\{\begin{array} { l }
{ d x / d s = n _ { x } } \\
{ d y / d s = n _ { y } } \\
{ d z / d s = n _ { z } } \\
{ d n _ { x } / d s = w _ { z } n _ { y } - w _ { y } n _ { z } } \\
{ d n _ { y } / d s = w _ { x } n _ { z } - w _ { z } n _ { x } } \\
{ d n _ { z } / d s = w _ { y } n _ { x } - w _ { x } n _ { y } } \\
{ d (q / p) / d s = 0 }
\end{array} \quad \left\{\begin{array}{l}
d n_{x} / d s=\frac{\partial n_{x}}{\partial \theta} \frac{\partial \theta}{\partial s}+\frac{\partial n_{x}}{\partial \varphi} \frac{\partial \varphi}{\partial s} \\
d n_{y} / d s=\frac{\partial n_{y}}{\partial \theta} \frac{\partial \theta}{\partial s}+\frac{\partial n_{y}}{\partial \varphi} \frac{\partial \varphi}{\partial s} \\
d n_{z} / d s=\frac{d n z}{d \theta} \frac{d \theta}{d s}
\end{array}\right.\right.
$$

$$
\begin{aligned}
& g=\left\{\begin{array}{l}
d x / d s=\sin \theta \cos \varphi \\
d y / d s=\sin \theta \sin \varphi \\
d z / d s=\cos \theta \\
d \theta / d s=w_{x} \sin \varphi-w_{y} \cos \varphi \\
d \varphi / d s=\cot \theta\left(w_{x} \cos \varphi+w_{y} \sin \varphi\right)-w_{z} \\
d(q / p) / d s=0
\end{array}\right. \\
& \left\{\begin{array}{l}
w_{x}=\kappa \frac{q}{p} B_{x} \\
w_{y}=\kappa \frac{q}{p} B_{y} \\
w_{z}=\kappa \frac{q}{p} B_{z}
\end{array}\right.
\end{aligned}
$$

Propagation: Adaptive Forth-Order Runge-Kutta Method

To avoid the problems of the fixed step length methods, and to adjust the accuracy in a predictable way, an adaptive Runge-Kutta method is needed.

$$
\begin{aligned}
& k_{1}^{(n)}=f\left(x_{n}, t_{n}\right) \\
& k_{2}^{(n)}=f\left(x_{n}+\frac{1}{2} h_{n} k_{1}^{(n)}, t_{n}+\frac{1}{2} h_{n}\right) \\
& k_{3}^{(n)}=f\left(x_{n}+\frac{1}{2} h_{n} k_{2}^{(n)}, t_{n}+\frac{1}{2} h_{n}\right) \\
& k_{4}^{(n)}=f\left(x_{n}+h_{n} k_{3}^{(n)}, t_{n}+h_{n}\right) \\
& x_{n+1}=x_{n}+\frac{1}{6} h_{n} \cdot\left(k_{1}^{(n)}+2 k_{2}^{(n)}+2 k_{3}^{(n)}+k_{4}^{(n)}\right)+\mathcal{O}\left(h_{n}^{5}\right) \\
& \text { Error estimation: } \epsilon^{(n)}=h_{n}^{2}\left(k_{1}^{(n)}-k_{2}^{(n)}-k_{3}^{(n)}+k_{4}^{(n)}\right)
\end{aligned}
$$

- The step size h is automatically adjustable in the programming to meet the requirement of the accuracy.
- The propagation routine is designed to be bidirectional.

Propagation for x and F

Let $h=s_{e}-s_{0}$ be the step size. The forth-order Runge-Kutta method numerically computes the change in the track state $\Delta x=x\left(s_{e}\right)-x\left(s_{0}\right)$ from $x\left(s_{0}\right)$ to $x\left(s_{e}\right)$ by evaluating the propagation function g at four points with different s-coordinates

$$
s_{i}=\left\{s_{0}, s_{0}+\frac{1}{2} h, s_{0}+\frac{1}{2} h, s_{e}\right\}
$$

Energy Loss, Multi-Scattering and Q

Energy loss and multi-scattering is calculated and momentum magnitude is updated for each Runge-Kutta step along the trajectory.

Energy loss due to ionization

For u^{+}and π^{+}: Bethe-Bloch formula

$$
\begin{array}{r}
-\frac{d E}{d s}=K z^{2} \frac{Z}{A} \frac{1}{\beta^{2}}\left(\frac{1}{2} \ln \left(\frac{2 m_{e} c^{2} \beta^{2} \gamma^{2} T_{\max }}{I^{2}}\right)-\beta^{2}\right) \\
K=4 \pi N_{A} r_{e}^{2} m_{e} C^{2}=0.307075 \frac{\mathrm{MeV} \cdot \mathrm{~cm}^{2}}{g} \\
\text { For } e^{+}:-\frac{d E}{d s}=\frac{1}{2} K \frac{Z}{A}\left(2 \ln \frac{2 m_{e} c^{2}}{I}+4 \ln \gamma-2\right)
\end{array}
$$

Valid range for both formulas: $\beta \gamma \in[0.1,1000]$, within momentum range of TREK

Energy loss due to radiation is negligibly small

Multi-Scattering

$$
\theta_{m s}=\frac{13.6}{\beta c p} z \sqrt{\frac{s}{X_{0}}}\left(1+0.038 \ln \frac{s}{X_{0}}\right)
$$

Q

$$
\begin{aligned}
& Q(\theta, \theta)=\theta_{m s}^{2} \\
& Q(\varphi, \varphi)=\frac{1}{\sin ^{2} \theta} \theta_{m s}^{2}
\end{aligned}
$$

Other elements are 0

F and Q between Two Measurements

Suppose that there are n Runge-Kutta steps (step = $1,2, \ldots, n$) between two measurements:

- $F=F_{n} F_{n-1} \cdots F_{2} F_{1}$
- $Q=Q_{1}+Q_{2}+\cdots+Q_{n}$

m, V and H

Measurement vector:

$$
m=(x, y, z)^{T}
$$

Measurement noise matrix:

$$
V=\left[\begin{array}{ccc}
\sigma_{x}^{2} & 0 & 0 \\
0 & \sigma_{y}^{2} & 0 \\
0 & 0 & \sigma_{z}^{2}
\end{array}\right]
$$

Projector matrix:

$$
H=\left[\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0
\end{array}\right]
$$

Initial State Vector

and Covariance Matrix

The optimized setup of initial state and covariance is the key to make the tracking successful since the number of measurements is very limited.

- Initial state vector: $\left(x_{0}, y_{0}, z_{0}, \theta_{0}, \varphi_{0}, q / p_{0}\right)$
- Initial covariance matrix:

$$
\left[\begin{array}{cccccc}
\operatorname{Var}\left(x_{0}\right) & 0 & 0 & 0 & 0 & 0 \\
0 & \operatorname{Var}\left(y_{0}\right) & 0 & 0 & 0 & 0 \\
0 & 0 & \operatorname{Var}\left(z_{0}\right) & 0 & 0 & 0 \\
0 & 0 & 0 & \operatorname{Var}\left(\theta_{0}\right) & 0 & 0 \\
0 & 0 & 0 & 0 & \operatorname{Var}\left(\varphi_{0}\right) & 0 \\
0 & 0 & 0 & 0 & 0 & \operatorname{Var}\left(q / p_{0}\right)
\end{array}\right]
$$

- $x_{0}, y_{0}, \mathrm{z}_{0}, \operatorname{Var}\left(x_{0}\right), \operatorname{Var}\left(y_{0}\right)$ and $\operatorname{Var}\left(z_{0}\right)$ are the same as measurements and square of uncertainties at C4.
- θ_{0} and φ_{0} are determined by the straight line between measurements of C 4 and C 3 since the magnetic field is weak between them.

Simulated Data for ky?

Correction of Initial θ_{0}

Initial Variances of θ_{0} and φ_{0}

Initial variances of θ_{0} and φ_{0} are from two aspects:

1. The first aspect is the difference of angle values between estimation and true, which is estimated by the simulated data
2. The second aspect is caused by uncertainties of C4 and C3 measurements, which is directly given by analytical solutions.

Set C4 and C3 measurements as $(x 1, y 1, z 1)$ and $(x 2, y 2, z 2)$ and their uncertainties as ($\sigma_{x 1}, \sigma_{y 1}, \sigma_{z 1}$) and $\left(\sigma_{x 2}, \sigma_{y 2}, \sigma_{z 2}\right)$

Then, $\Delta x=x 1-x 2, \Delta y=y 1-y 2, \Delta z=z 1-z 2$,
and $\sigma_{\Delta x}=\sqrt{\sigma_{x 1}^{2}+\sigma_{x 2}^{2}}, \sigma_{\Delta y}=\sqrt{\sigma_{y 1}^{2}+\sigma_{y 2}^{2}}, \sigma_{\Delta z}=\sqrt{\sigma_{z 1}^{2}+\sigma_{z 2}^{2}}$
For $\begin{aligned} \theta, \quad \cos \theta & =\frac{\Delta z}{\sqrt{\Delta x^{2}+\Delta y^{2}+\Delta z^{2}}} \\ \operatorname{var}(\theta) & =\left(\frac{\partial \theta}{\partial \Delta x}\right)^{2} \sigma_{\Delta x}^{2}+\left(\frac{\partial \theta}{\partial \Delta y}\right)^{2} \sigma_{\Delta y}^{2}+\left(\frac{\partial \theta}{\partial \Delta z}\right)^{2} \sigma_{\Delta z}^{2}\end{aligned}$
For $\varphi, \quad \tan \varphi=\frac{\Delta y}{\Delta x}$
$\operatorname{var}(\varphi)=\left(\frac{\partial \varphi}{\partial \Delta x}\right)^{2} \sigma_{\Delta x}^{2}+\left(\frac{\partial \varphi}{\partial \Delta y}\right)^{2} \sigma_{\Delta y}^{2}$

Seed, q / p_{0} and $\operatorname{Var}\left(q / p_{0}\right)$

- Each seed includes 3 MWPC measurements.
- To determine initial momentum magnitude of a seed, a routine is built to choose the best initial momentum with the minimized χ^{2}. The idea: apply momentum magnitude trials and extract χ^{2} for each trial, then decrease the range of candidate momentum magnitude by comparison of χ^{2}.
- The uncertainty of the momentum magnitude candidate with the range of 92.5 to $347.5 \mathrm{MeV} / c$ is $0.25 \mathrm{MeV} / c$, so $\operatorname{Var}\left(q / p_{0}\right)$ is $(0.25)^{2} q^{2} / p_{0}{ }^{4}$.

Fast tracker

To decrease number of momentum magnitude trials, a fast tracker is applied:

1. In the $x-z$ plane, the trajectory between C 2 and C 3 is regarded as a circular arc, while the circular center is located at the straight line which is vertical to the C4C3 straight line
2. Then $p=k B r c / \sqrt{n_{x}^{2}+n_{z}^{2}}$, where r is radius of the circle, and $\kappa=0.299792458 \frac{M e V}{c \cdot m m \cdot T}$

Application of Fast Tracker

\vec{B} is inhomogeneous

B determination function:

$$
\begin{aligned}
& B=f(r)=[0]+[1] e^{\frac{[2]}{r+[3]}}(r>525 \mathrm{~mm}) \\
& B=f(525) \quad \quad(r<=525 \mathrm{~mm})
\end{aligned}
$$

- If the best momentum candidate is judged to appear between estimated momentum +/-8 $\mathrm{MeV} / \mathrm{c}$, an improved routine with less trials is applied to extract the best momentum candidate.
- Otherwise, the previous general routine with more trials is applied.

Why Develop A Tracking Package from Scratch?

- Public Kalman filter packages, like GENFIT, serves for two cases,

1. Particle's trajectory is helix
2. Particle's trajectory has small deflection angle which is less than 90°

- For most events of the TREK experiment, the deflection angle is large than 90°.
- For the public packages, state vectors are represented by 5 parameters with a specified reference, including 2 parameters for position, 2 parameters for momentum direction, and 1 parameter for momentum magnitude. For the TREK experiments, the state vector requires 3 parameters for position, so there are totally 6 parameters with the path length as reference.
- The third position parameter is regarded as the location of the detector plane with a very small uncertainty. The MWPC hit position is an average of several tens to several hundreds of ion-electron pairs generated positions in a particle's path within the detector's effective area. The average value is around the detector plane and has an uncertainty.

Scheme of the Tracking Package

Overview of Programming

- Environment: C++ and ROOT
- Build tool: Make
- Main function: trekTracker.cxx
- Constant value setup: utility.h
- Classes:
- Particles' properties: particle
- Plane and hit: plane and planeHit
- Detectors' properties: mwpcs, tof1, tof2, sft, target, etc
- Field map and propagation: fieldMap and fieldStepper
- Specified matrix definition for TREK tracking: matrix
- Tracking by Kalman filter and smoother: trackSystem, trackSite and trackState
- Tracking engine: trackFinder
- Track information storage: track

Application for Simulated Data

Difference (Δ = tracking results - true values) of state vector at C2

Application for Experimental Data

Tracking efficiency $=97.6 \%$

p at vertex

Summary and Future

- The TREK tracking package with application of the Kalman filter is developed and works well.
- To further improve the momentum resolution
- The package will be updated to directly apply the target and SFT measurements into the Kalman filter.
- The setup for geometry and material of the detector system will be polished.

